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Abstract

In this paper we discuss the relations among the doubling condition, equivalence of the Hausdorf{f measures and equiva-

lenee of metrics. We will show that ###1 and % 2 are equivalent for any compact metric space (X, p) if and only if g and g; are cquiva-

lent gauge functions. Then, we prove that for given ¢ € (0, 90) \ {1}, ## % and #**'# are equivalent for any compact metric space (X, p)

if and only if the gauge function g satisfies the doubling condition, where ## is the Hausdorff measure with respect to the metric p and

gauge [unction g.
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Let X be a nonempty set. Two metrics p; and
p2 on X are said to be equivalent if there are constants
0<¢y, c,< o such that for any =, y&€ X

croi{a,y) < pala,y) < oo (x, v).

Two measures u¢; and u; on X are said to be e-
quivalent if there are constants 0 < ¢y, ¢, < % such
that for any KCX

i (K) s<pa(K) < ey (K.

A function g:[0, o )—>[0, ) is called a gauge
function if g is continuous on the right for r =0,
monotonic increasing for ¢ =0, and g (#) >0 for
t >0 with g(0) =0. Two gauge functions g; and g
are said to be equivalent if there are constants 0< ¢y,
c2< %0 and § >0 such that for any 0<r<CS

crgi(e) < gal1) < ergqi ().

A gauge function g is called to satisfy the dou-
bling condition if there are constants 0 < ¢ < % and
8§ >0 such that for any 0<Cr<{§

g(21) < cg(t).

Doubling condition plays an important role in the
studies of geometric measure theory and fractal geom-
etry, for example, see Mattila'!!. From above defini-
tions, we see immediately a gauge function g satisfies
the doubling condition if and only if g(¢) and g(21)

are equivalent.

Let (X, p) be a metric space and g a gauge
function and let KC X. A countable family { U,| of
subsets of X is said to be a §-covering of K with re-
spect to the metric p if KC[IJU, with 0<| U, \{,ir?

for each 7, where | U, |, denotes the diameter of U,
(that is, | U;|p:supip(1‘,y); r,yEU ). Set

ATE(K) = inf > g1 U, 1,),
=
where the infimum is taken over all 8-coverings { U, |
of K with respect to p. Then the Hausdorff measure
with respect to the metric p and the gauge function g
is defined by
HOE(K) = &iirdﬂg'g(K),

which is a Borel regular metric measure on X.

In this paper we will discuss the relations among
the doubling condition, equivalence of the Hausdorff
measures and equivalence of metrics. We will show
that #° %1 and #*'%2 are equivalent for any compact
metric space ( X, p) if and only if g and g, are e-
quivalent gauge functions ( Theorem 1). Then, we
prove that for given ¢ € (0, ) \ |1, #"# and
A€ are equivalent for any compact metric space
(X, p) il and only if the gauge function g satisfies
the doubling condition ( Theorem 2). Furthermore,
we will show an extreme case if the gauge g does not
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fulfill the doubling condition, in this case, we will
give a gauge function g for which there is a metric
space (X, p) such that 0<#”4(X) < oo, #*8(X)
=0forall 0< ¢<1 and #**&4(X)=o0 for all ¢ >1
( Proposition 1). Another aim of this paper is to study
how the metric influences the Hausdorff measure. By
the definition, if g (t) = +' with s > 0, then the
Hausdorff measure #*'# scales with expenent s in the
sense of #7# = *#° ¢ for every ¢ >0. Mauldin and
Williams'??, Csémyei and Mauldin®* investigated the
scaling Hausdorff measures in the Eucildean spaces.
They proved that, for every continuous gauge func-

glt)

tion g such that =~ is a decreasing function of ¢,
t

the corresponding Hausdorff measure on R ¢ scales
with exponent 0<{s<Cd if and only if it is of the form
g(t)=¢L(t), where L(t) is slowly varying. By
contrast, we show that even if the gauge g satisfies
the doubling condition, there exists a metric space
(X, p) with two equivalent metrics ¢;p and c;p (¢,
#¢5) such that 0 < #9”8 (X)) = 7520 % (X)) < o0
(Proposition 2).

For every gauge function g we define

g«lx) =

. . g(tx)
g ' (x) = llrflft}]p 2(1) r=0.

Given a gauge g, the following lemma gives
some equivalent statements of the doubling condition

of g related'to g~ and g« .

Lemma 1. Let g be a gauge function. The fol-
lowing statements are equivalent.

(i) g satisfies the doubling condition;
(ii) g« (2)>0 for some x € (0,1);
(iii) g« (x) >0 for all £ >0;

(iv) g" (x)< o for some x >1;
(v) g" (x)< o for all x>0.

Proof. By the definitions of doubling condition
and g, it is ready to see that g satisfies the dou-
bling condition if and only if g . (%) >0, and we
obtain thus (1)=>(ii) and (iii)=(i). Also, it is easily
seen that g (x)g” ( %) =1 provided this product is

not 0 times c©. Thus (ii)&(iv) and (iii)S(v). To

complete the proof, it suffices to show (ii)=>(iii).

For this, suppose a € (0,1) with g, (a)>0. Then
g(at)>%g* (a)g(t) if t is small enough. For any

x >0 we may choose a positive integer m such that x
m

=a", g (1)

then g (xt)=g (a™ )= %g*(a)

for ¢ small enough, this gives immediately g. (z)=

m

>0.

(%g*(a)

The theorem below establishes the relation be-
tween the equivalence of Hausdorff measures and the
equivalence of the gauges under the same metric.

Theorem 1. let g, A be two gauges. Then
AP ¥ and #*" are equivalent for any compact metric
space (X, p) if and only if g and h are equivalent.

Proof. The sufficiency of the condition is obvi-
ous.

1
2
ayazra, > A for any n==1. Assume that g and A

Let 7 <A<1 and g, = Azin(n € N), then

are not equivalent, then by the definition, there ex-

ists a sequence {98, v 0},>9 such that either

l. h(aﬂ)_ l- h(an)

"Lrgg(an) B or "Eg(an)
h(3, . h(9,

the case ,}i»nologES,,; =0. The case gg?ogES,,; =+ o0

can be treated in the same way. Since limg(§,) =0

= + oo, We only discuss

from g(0) =0 and g being continuous on the right,
we may suppose further the sequence {6, { is chosen
to satisfy

g(8,) << (1~

an)g(an—l)a n e N

We are going to construct a compact metric space
(X, p) such that

0 < #8(X) < o and A" (X) =0,
which follows the necessity of the theorem.

8,
Take kHZ[&"—l)] n€ N, where [z] de-
g(d,)
notes the integer part of x, then
1
e =}
g(89)
klkZ kngg(éxn)s (1)
and
g () )(g(al) )
kik 2( - —
katke =Gy T (e 7!
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. g(an—l) - 1
2 (8,)
- a]ug"'a,,g(ﬁn) /\K(au)
== > .
=T G T gy @

Let Fy=1[0,1). We construct a compact subset
X of the interval [0, 1] in the following way: take
any k disjoint closed subintervals of the unit interval
[0, 1] with positive lengths, and denote by F, the u-
nion of these £ intervals. For every element [ of Fy,
take £, disjoint closed subintervals of I with positive
lengths, we obtain thus £k, disjoint closed intervals
of [0,1], and denote by F, the union of these k4,
intervals. Continue the above procedure, we obtain a
sequence FyDF | DF,;D---DF, . Set

X =NF,

n-=

By the above construction, X is a nonempty
compact subset of [0, 1]. Every element of F, is
called a basic interval of level-n. Denote by d, the
largest length of the basic intervals of level-n, we

may require limd, =0.
n—E

let v, y€ X with 27y and let n(x, y) be the
highest level of the basic interval which contains x
and y, this means, there exists an interval I of level
n{x, v) which contains both x and vy, but any basic
interval does not contain simultaneously r, vy if its
level is higher than n(x, v). We now define another
metric p on X as follows:

0 ifxr =,

plasy) = ifxy.

an(;r.‘v)

Under this metric, we see easily that X is com-
pact and totally disconnected.

We are going to estimate the Hausdorf{ measure
of (X, p) with respect to the gauge g. Let n==1 and
I a basic interval of level-n. From the definition of
the metric p, we see that for any x,y€ I, n(x,y)
2 n, in which the equality holds for some x, y€ I,
so |11,=0,. Thus the family of all basic intervals of
level-n is a 8,-cover of X with respect to p, we have
therefore from (1)

//b{)‘g(X) g klkz‘“kng(an) < g(é\o)a
which follows that

AP E(X) < g(80). (3)

Let y be the unique Borel probability measure on
X satisfying

S S
k 1 kz - k” ’
where n 221 and I, is any basic interval of level-n .
Let U be a subset of X with 0< | U | < 0pand n the
positive integer with 6, << U|[,<¢, ;. By the defi-

u(l,) =

nition of the metric p, we have | U | 0= 0, so there
is a basic interval of level-n I, such that U C1I,.
Thus we have from (2)
y ]
pOD S L) = i < &;L(La‘y)
which yields from Frostman I.emma
Ag(dy) == #™#(X).

Associating with (3), we see that

0 < ag(8y) <8 (X) << g(8)) < . (4)

With respect to the gauge h, we get also
\ h(6,)
Hy (X S lako ki (8,) < £(80) 5"

By the hypotheses i (8,)/g(68,)~>0, we get thus

#eh (X)) =0. By comparing with (4), we sce tha
#24(X) and #*" ( X ) are not equivalent which
completes the proof of the theorem.

For the same gauge function, the following theo-
rem establishes the relation between the doubling con-

dition and the Hausdorff

measures.

equivalence of the

Theorem 2. Suppose that g is a gauge and ¢ €
(0,00) \ {1t.

quivalent.

Then the following statements are ¢-

(i) g satisfies the doubling condition;

(ii) #* ¢ and #°¥ are equivalent for any com-
pact metric space (X, ).

Proof. (i) => (ii). In fact, we will prove a
stronger implication: if g is a doubling gauge, then
for any two equivalent metrics py and p;, ##v¥ and

AP € gre equivalent.

Let 0< ¢y, ¢,< 0 be two constants such that
croi{x, y) << palx,y) < 2o, v),
Vr,y € X.

As g satisfies the doubling condition, g. (¢y)
and g " (cy) are finite positive by Lemma 1. Thus it

suffices to prove for every KC X,
g« (c) AP E(K) AP *(K) << g7 () n" ¥ (K).

Let KC X and §>0. Let {U;{ be a §-covering
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of K with respect to py, then {U,| is a ¢,8-covering o) such that 0<#”#(X)< o0,
of K with respect to p;. Since
Zg(‘ U 1,)< Zg(fz U1, Now note that for each 6 >0, {U,;{,_, is a §-

< g(czt)zg(lU |

0oSP, g(t)
we have
2 & g(le‘) g
o LK) < sy KD,
which yields that
HrE(K) < g7 ()8 (K). (5)

In the same way, we have

s (K) < g |

1 HrrE(K).
€1

As g . (cl)g*(i) =1, we obtain

€1
gy (e))HrE(K) < #28(K). (6)

So #Pv# and #P2’# are equivalent from (5) and

(6).

(i1)=(i). By the definition of Hausdorff mea-
sure, we see easily #? & = #*&()  Thus, from
Theorem 1, g(t) and g(ct) are equivalent, which
follows by Lemma 1 that g satisfies the doubling con-

dition.

The following proposition indicates an extreme
case if the gauge g does not satisfy the doubling con-
dition.

Proposition 1. Let 0<¢ <1, let g be a gauge
function and (X, p) a metric space. Suppose that

(1) hm =0;

(t)
(i) 0< #8( X )< o0,

Then
HeE(X) =0,

HePE(X) =

Proof. Note first there exist gauge function g
and metric space (X, p) fulfilling the requirements of
the proposition. For example, take

0 fort =0,
g(1) = 2771 for 1 <z<l,n€N.

n+1"
gi(_)) 0 for all

0<¢<1. Then, by a theorem of A. Dvoretzky (see
[4], Theorem 36), there exists a metric space (X,

It is easily checked that lirrg

cover of X with respect to p if and only if { U; f -118
a c0-cover of X with respect to cp, so by

- Ngle L U 1)
20U )= 2250 TARRALAL

g(ct) ~
< 2,50y 2480 Uil
we have

Hy (X)) < ,Sup, ggj%t")zﬂa'g(X).

As #*8 (X)) is finite positive by the condition
glct) _

g(1)
lows that #°'2(X) =0 by letting §—0.

(ii) and hm =0 by the condition (i), it fol-

Similarly, note that, for each § >0, | U, fl L s

a c8-cover of X with respect to p if and only if

1
0 by

(z)zg(i U 1,)

[U, 17, is a 6-cover of X with respect to

e U, 11,) > inf
i=1 ¢

0<r<s g
we have
1
2B E_LL P &
*OX) = oot g( t)yf‘a (X
By letting 6—>0, it follows that #<”&(X)= + oo,

Given a metric space (X, p) and a gauge g,
#*8(X), as a function of variable ¢ € (0, ), is
increasing. However we will show that even if the
gauge satisfies the doubling condition and 0 <

HPB(X )< oo, #°#(X) may not be strictly increas-

ing, in fact, we will construct a gauge function g and

a metric space ( X, p) such that for all ¢ € [ 1 1]

#05(X) =+

Now let o be the Euclidean metric on the real
line. Consider an iterated function system (IFS) on

[0,1]:

$ = (o1, 02, ¢3),

2

ea(x) = +g, 4

§03(I) = 5 5"
Let X be the self-51m11ar set generated by the IFS ¢,
then X = 1<U<3go,-(X). It is known that X is a Can-

tor-type set with Hausdorff dimension s = logs3 and
s-dimensional Hausdorff measure #°(X) =1. For the
details about IFS and self-similar set, we refer to Fal-

901( ) - %,
+
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coner!J On the other hand, let x be the Borel measure
1. 1 . ~n
Set OHEX(::{EI,IGX}) defined by «(1I,) =3
0 if r =0,
glt) = ' for every copy I, of level-n of LX, n € N . Suppose

37 ST < r <5, € N,

Proposition 2. With the above notations, we

have
HEE(X) = .V(%P‘K(X) = %
Proof. By the definition of g, it is easily seen

that g is a doubling gauge satisfying %t"<g(t)<t“

for 0<t <1, thus %Q,W"g(X)Ql. To prove the

conclusion of the proposition, it suffices to show that
1

.}W’“‘(X)<% and ,7(3"“"()()2%.

Let n, ;€ N . By the construction of X, we see
that X consists of 3" copies of itself of diameter 577,
and each copy can be covered by two intervals of
which the lengths are respectively 57 =5 "*7) and
5 (%1 56 X can be covered by 2+3" intervals, half
with length S™" = S~ ("*7 and the other half with

length 5 ") Thus
A 3g(57 - 570 4 3 (570 )
1 1

+_7

— 371 —(n+l) + 3" —{(n+y) —
3 373 Ry

which yields #7¥ ( X)g%.

2
I is an interval with 0< | I|<1. Let n € N be the
integer with 5 "<C |I|<5 "*Yand I1(Z[0,1]) an
interval of length 5~ " "! such that IS 1. By the con-
struction of %X, every copy of level-(n — 1) of ,1,’\
has diameter 5 ""!/2, and any two adjacent copies
of level-(n — 1) are separated by a gap of length
577'1/2. Thus I intersects at most two copies of
level-(n — 1) of %X, which leads to u (1) =3 """,
Thus
p(D) < p(I) =301 T1).

1 i
From the Frostman Lemma, we obtain #2°*(X)=

1
3
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